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Abstract
In practice, a disease process might involve three ordinal diagnostic stages: the
normal healthy stage, the early stage of the disease, and the stage of full devel-
opment of the disease. Early detection is critical for some diseases since it often
means an optimal timewindow for therapeutic treatments of the diseases. In this
study, we propose a new influence function-based empirical likelihood method
and Bayesian empirical likelihood methods to construct confidence/credible
intervals for the sensitivity of a test to patients in the early diseased stage given
a specificity and a sensitivity of the test to patients in the fully diseased stage.
Numerical studies are performed to compare the finite sample performances
of the proposed approaches with existing methods. The proposed methods are
shown to outperform existing methods in terms of coverage probability. A real
dataset from the Alzheimer’s Disease Neuroimaging Initiative (ANDI) is used to
illustrate the proposed methods.
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1 INTRODUCTION

Medical diagnostic tests are usually used to classify subjects into two stages, the nondiseased stage and the diseased stage.
The accuracy of a diagnostic test can be evaluated based on its sensitivity and specificity, that is, the probabilities of correct
diagnoses for diseased subjects and for nondiseased subjects, respectively. Both sensitivity and specificity are not fixed,
and they are functions of a cutoff value of test results when the diagnostic test result is continuous. The receiver operating
characteristic (ROC) curve, a plot of sensitivity versus (1− specificity), is an important tool in measuring the accuracy of a
diagnostic test in a two-class classification problem. It shows the trade-off between sensitivity and specificity as the cutoff
point varies through all possible values of the diagnostic test. However, a disease process might be more complicated and
involves three diagnostic stages: the nondiseased (healthy) stage, the early diseased stage, and the fully diseased stage.
In practice, the sensitivity to the early diseased stage is more significant since early detection means optimal therapeutic
treatments for some diseases. For example, mild cognitive impairment (MCI) is a transitional stage between the normal
levels of cognition and dementia in Parkinson’s disease (PD) (Petersen, 2004). And it is important to diagnose patients
with MCI because they are more likely to progress to dementia (Aarsland & Kurz, 2010).
To be more specific, let 𝑌1, 𝑌2, and 𝑌3 be the continuous test results of a diagnostic test from the nondiseased, the early

diseased, and the fully diseased groups, respectively, and 𝐹1, 𝐹2, and 𝐹3 be the corresponding cumulative distribution
functions of the test results. Assume that the higher values of the test results indicate greater severity of the disease. Given
a pair of cutoff values 𝑐1 and 𝑐2 (𝑐1 < 𝑐2), a subject is identified as nondiseased if the test result is smaller than 𝑐1, as fully
diseased if the test result is larger than 𝑐2, and as early diseased if the test result is between 𝑐1 and 𝑐2. The specificity 𝑃1
of the test is the correct classification rate of subjects in the nondiseased stage. The sensitivity 𝑃2 of the test to the early
diseased stage and the sensitivity 𝑃3 of the test to the fully diseased stage are the correct classification rates of subjects in
the early and fully diseased stages, respectively. 𝑃1, 𝑃2, and 𝑃3 are defined as

𝑃1 = 𝐹1(𝑐1),

𝑃2 = 𝐹2(𝑐2) − 𝐹2(𝑐1) = 𝐹2[𝐹
−1
3
(1 − 𝑃3)] − 𝐹2[𝐹

−1
1
(𝑃1)],

𝑃3 = 1 − 𝐹3(𝑐2).

(1)

Given 𝑃1 and 𝑃3, 𝑐1, and 𝑐2 can be determined if 𝐹1 and 𝐹3 are known distribution functions. Given the specificity 𝑃1
and the sensitivity 𝑃3 to the fully diseased stage, 𝑃2, the sensitivity to the early diseased stage can be formulated as a
function of 𝑃1 and 𝑃3, that is, 𝑃2 = 𝑃2(𝑃1, 𝑃3). The surface in the three-dimensional space (𝑃1, 𝑃3, 𝑃2) with 0 ≤ 𝑃1, 𝑃3 ≤
1 is called the ROC surface of the test. Scurfield (1996) proposed a ROC surface analysis. A few years later, Mossman
(1999) independently proposed a similar analysis which was implemented using mathematica by Heckerling (2001). A
nonparametric estimation of ROC surface was proposed by Nakas and Yiannoutsos (2004) and reshaped later by Xiong
et al. (2006) and Li and Zhou (2009). For a disease such as PD, early detection of the disease is usually difficult and crucial
because it usually means that patients can receive earlier treatments. Therefore, the probability associated with the early
detection of the disease is a very important accuracy measure for the diagnostic test of the disease with three stages.
Dong et al. (2011) first provided parametric and nonparametric confidence intervals for 𝑃2, the sensitivity to the early
diseased stage. However, their approaches fail if the normal assumption for test results cannot be satisfied. Dong and Tian
(2015) proposed two empirical likelihood-based (EL) confidence intervals (ELP and ELB) for 𝑃2 which can overcome the
normal assumption, but their EL ratio statistic for𝑃2 follows a scaled chi-square distribution asymptotically. Thus, an extra
step is required to estimate the unknown scale constant for inference on 𝑃2 by using density estimation or the bootstrap
method. Yu et al. (2012) proposed EL methods based on influence functions of parameters of interest. Hai et al. (2020)
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TABLE 1 List of acronyms

Acronym Explanation
EL empirical likelihood
ANDI Alzheimers Disease Neuroimaging Initiative
ROC receiver operating characteristic
AUC area under the ROC curve
ELP plug-in empirical likelihood
ELB empirical likelihood based on bootstrap
IF influence function-based empirical likelihood
BEL1 Bayesian empirical likelihood 1
BEL2 Bayesian empirical likelihood 2
BIF1 Bayesian influence function-based empirical likelihood 1
BIF2 Bayesian influence function-based empirical likelihood 2
BpEL1 Bayesian pseudo empirical likelihood 1
BpEL2 Bayesian pseudo empirical likelihood 2
BpIF1 Bayesian pseudo influence function empirical likelihood 1
BpIF2 Bayesian pseudo influence function empirical likelihood 2

proposed an influence function-based EL method for inference of sensitivity of two-stage diagnostic tests. Motivated by
Yu et al. (2012) and Hai et al. (2020), we propose an influence function and EL-based confidence interval for 𝑃2 at a given
value of the pair (𝑃1, 𝑃3), that is, the sensitivity of the test to the early diseased stage at a specificity and a sensitivity of
the test to the fully diseased stage. The idea is to replace the estimating function in the EL with an influence function
of the sensitivity to the early stage. The corresponding empirical log-likelihood ratio statistic is shown to converge to a
standard chi-square variable, which makes inference on 𝑃2 more convenient. Despite wide applications in many areas,
EL has only recently been used in Bayesian analysis. Lazar (2003) observed that properties of EL are, in many respects,
similar to those of parametric likelihoods and explained why EL can be used in the Bayesian framework like parametric
likelihoods. Motivated by Lazar’s work, Bayesian empirical likelihood (BEL) approaches are also developed to construct
credible intervals for 𝑃2 in this article (see Table 1).
The article is organized as follows. In Section 2, we review Dong and Tian (2015)’s plug-in EL methods for interval

estimation of sensitivity to the early stage. In Section 3, we introduce a new EL ratio statistic for sensitivity to the early
stage based on influence function. In Section 4, we propose BEL methods based on influence function. In Section 5, we
conduct simulation studies to compare the finite sample performance of the proposed methods with existing methods. In
Section 6, a real dataset from the Alzheimer’s Disease Neuroimaging Initiative (ANDI) is used to illustrate the proposed
methods. In Section 7, we conduct a discussion on estimation of sensitivity to the early stage. The R codes and dataset
used in this article are provided as Supplementary Information.

2 PLUG-IN EMPIRICAL LIKELIHOODMETHOD

Without any underlying distribution assumptions, Dong and Tian (2015) proposed two empirical likelihood-based
confidence intervals for 𝑃2. They defined an indicator function Φ:

Φ(𝑋,𝑌, 𝑍) =

⎧⎪⎪⎨⎪⎪⎩

1, 𝑋 < 𝑌 < 𝑍,
1

2
, 𝑋 = 𝑌 < 𝑍 or 𝑋 < 𝑌 = 𝑍,

1

6
, 𝑋 = 𝑌 = 𝑍,

0, otherwise,

(2)

and a random variable 𝑈 at given 𝑃1 and 𝑃3:

𝑈(𝑌) = Φ[𝐹−1
1
(𝑃1), 𝑌, 𝐹

−1
3
(1 − 𝑃3)], (3)

where 𝑌 is a test result of a subject from the early diseased group.
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For a given test result 𝑌2 of a test from the early diseased group, the value of 𝑈(𝑌2) can be interpreted as the place-
ment value of 𝑌2 in the nondiseased and fully diseased populations. Let {𝑌1,𝑗 ∶ 𝑗 = 1, 2, … , 𝑛1}, {𝑌2,𝑗 ∶ 𝑗 = 1, 2, … , 𝑛2},
and {𝑌3,𝑗 ∶ 𝑗 = 1, 2, … , 𝑛3} denote the 𝑛1, 𝑛2, and 𝑛3 test results from the nondiseased, early stage, and fully diseased
groups, respectively. From the following relationship between 𝑈(𝑌2) and 𝑃2:

𝐸(𝑈(𝑌2)) = 𝐸{Φ[𝐹−1
1
(𝑃1), 𝑌2, 𝐹

−1
3
(1 − 𝑃3)]}

= 𝑃[𝐹−1
1
(𝑃1) < 𝑌2 < 𝐹−1

3
(1 − 𝑃3)]

= 𝑃[𝐹−1
1
(𝑃1) < 𝑌2 ≤ 𝐹−1

3
(1 − 𝑃3)]

= 𝑃2,

(4)

a plug-in empirical likelihood for 𝑃2 can be defined as

𝐿(𝑃2) = sup
𝒑

{
𝑛2∏
𝑗=1

𝑝𝑗 ∶

𝑛2∑
𝑗=1

𝑝𝑗 = 1,

𝑛2∑
𝑗

𝑝𝑗(�̂�𝑗 − 𝑃2) = 0

}
, (5)

where �̂�𝑗 = Φ[�̂�−1
1
(𝑃1), 𝑌2,𝑗, �̂�

−1
3
(1 − 𝑃3)], 𝑗 = 1, 2, … , 𝑛2, are plug-in estimates for 𝑈(𝑌2,𝑗)s, �̂�1 and �̂�3 are the empirical

distributions of 𝐹1 and 𝐹3, respectively. Using the Lagrange multiplier method, we can easily obtain the expression of 𝑝𝑗:

�̃�𝑗 =
1

𝑛2
{1 + �̃�(𝑃2)(�̂�𝑗 − 𝑃2)}

−1 (6)

where �̃�(𝑃2) is the solution to

1

𝑛2

𝑛2∑
𝑗=1

�̂�𝑗 − 𝑃2

1 + �̃�(𝑃2)(�̂�𝑗 − 𝑃2)
= 0. (7)

The corresponding plug-in empirical log-likelihood ratio for 𝑃2 is

𝑙(𝑃2) = 2

𝑛2∑
𝑗=1

log{1 + �̃�(𝑃2)(�̂�𝑗 − 𝑃2)}. (8)

Dong and Tian (2015) have shown that the asymptotic distribution of 𝑙(𝑃2) is a scaled (with unknown scale constant
𝑟𝑃1,𝑃2,𝑃3) chi-square distribution with one degree of freedom. Thus, a 100(1 − 𝛼)% level plug-in empirical likelihood-based
confidence interval (ELP) for 𝑃2 can be constructed as follows:

𝐶𝐼1(𝑃2) = {𝑃2 ∶ 𝑟𝑃1,𝑃2,𝑃3 𝑙(𝑃2) ≤ 𝜒2
1
(1 − 𝛼)}, (9)

where 𝜒2
1
(1 − 𝛼) is the (1 − 𝛼)th quantile of 𝜒2

1
, and 𝑟𝑃1,𝑃2,𝑃3 is an estimate for the unknown scale constant:

𝑟𝑃1,𝑃2,𝑃3 =
̂̄𝑃2(1 −

̂̄𝑃2)

𝑛2�̂�
2
̂̄𝑃2

, (10)

where

̂̄𝑃2 =

∑𝑛2
𝑗=1

𝐼[�̂�−1
1
(𝑃1) < 𝑌2,𝑗 ≤ �̂�−1

3
(1 − 𝑃3)]

𝑛2
, (11)

�̂�2
̂̄𝑃2
=

̂̄𝑃2(1 −
̂̄𝑃2)

𝑛2
+

𝑃1(1 − 𝑃1)

𝑛1

𝑓2
2
[�̂�−1

1
(𝑃1)]

𝑓2
1
[�̂�−1

1
(𝑃1)]

+
𝑃3(1 − 𝑃3)

𝑛3

𝑓2
2
[�̂�−1

3
(1 − 𝑃3)]

𝑓2
3
[�̂�−1

3
(1 − 𝑃3)]

, (12)

and 𝑓𝑖 is a kernel density estimate for the probability density function 𝑓𝑖 of 𝑌𝑖 , 𝑖 = 1, 2, 3.
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To estimate the density function 𝑓𝑖 , Dong and Tian (2015) used the “oversmoothed bandwidth selector” by Wand and
Jones (1995) to select the bandwidth with a Gaussian kernel function. The performance of this method highly depends on
the kernel density estimates whose bandwidths are chosen without a well-recognized standard. Therefore, they proposed
the following bootstrap procedure to obtain a bootstrap estimate �̂�2∗

̂̄𝑃2
for the variance instead of �̂�2

̂̄𝑃2
in Equation (10):

Step 1: Draw bootstrap resamples of sizes 𝑛1, 𝑛2, and 𝑛3 with replacement from the nondiseased sample 𝑌1𝑗s, the early
diseased sample 𝑌2𝑗s, and the fully diseased sample 𝑌3𝑗s, respectively. Denote the bootstrap samples as {𝑌𝑏

𝑖𝑗
},

𝑖 = 1, 2, 3, 𝑗 = 1, 2, … , 𝑛𝑖 .
Step 2: Calculate the bootstrap version ̂̄𝑃𝑏

2
of ̂̄𝑃2 according to Equation (11).

Step 3: Repeat the first two steps 𝐵 times to obtain the bootstrap variance estimate of ̂̄𝑃2 which is defined as

�̂�2∗
̂̄𝑃2
=

1

𝐵 − 1

𝐵∑
𝑏=1

( ̂̄𝑃𝑏
2
−

̄̄̂
𝑃∗
2
)2, (13)

where ̄̄̂
𝑃∗
2
=

1

𝐵

∑𝐵

𝑏=1
̂̄𝑃𝑏
2
.

This leads to the second 100(1 − 𝛼)% level empirical likelihood confidence interval (ELB) for 𝑃2:

𝐶𝐼2(𝑃2) = {𝑃2 ∶ 𝑟∗
𝑃1,𝑃2,𝑃3

𝑙(𝑃2) ≤ 𝜒2
1
(1 − 𝛼)}, (14)

where

𝑟∗
𝑃1,𝑃2,𝑃3

=

̄̄̂
𝑃∗
2
(1 −

̄̄̂
𝑃∗
2
)

𝑛2�̂�
2∗
̂̄𝑃2

. (15)

3 INFLUENCE FUNCTION-BASED EMPIRICAL LIKELIHOODMETHOD

The application of the existing plug-in empirical likelihood-based ELP and ELB intervals for 𝑃2 is computationally expen-
sive due to the need for estimation of an unknown scale constant by density estimation and bootstrap process. Moreover,
the finite sample performance of ELP and ELB intervals depends on estimation accuracy of the estimators for the scale
constant. Hai et al. (2020) initially provided influence function-based EL methods for sensitivity of two-stage diagnostic
tests. However, the extension of the results for the two stage in Hai et al. (2020) to three-stage tests is not trivial. Herein,
we disclose a new influence function-based EL method, allowing construction of confidence intervals for sensitivity to
the early diseased stage to remove the estimation of the unknown scale constant in Dong and Tian (2015).
We combine the samples {𝑌𝑖,𝑗 ∶ 𝑖 = 1, 2, 3; 𝑗 = 1, 2, … , 𝑛𝑖} as

𝑍𝑙 =

⎧⎪⎨⎪⎩
𝑌1,𝑙, 𝑙 = 1, … , 𝑛1,

𝑌2,𝑙−𝑛1
, 𝑙 = 1 + 𝑛1, … , 𝑛1 + 𝑛2,

𝑌3,𝑙−𝑛1−𝑛2
, 𝑙 = 1 + 𝑛1 + 𝑛2, … ,𝑁,

(16)

where 𝑁 = 𝑛1 + 𝑛2 + 𝑛3.
Let 𝑐1 = 𝐹−1

1
(𝑃1), and 𝑐2 = 𝐹−1

3
(1 − 𝑃3). Define �̂�2 as the empirical distribution of𝐹2, 𝑐1 = �̂�−1

1
(𝑃1) (i.e., the𝑃1th sample

quantile of 𝑌1,𝑗s), and 𝑐2 = �̂�−1
3
(1 − 𝑃3) (i.e., the (1 − 𝑃3)th sample quantile of 𝑌3,𝑗s). Then the sensitivity 𝑃2 of the test to

the early diseased stage can be consistently estimated by

�̃�2 = �̂�2(𝑐2) − �̂�2(𝑐1) = �̂�2[�̂�
−1
3
(1 − 𝑃3)] − �̂�2[�̂�

−1
1
(𝑃1)] ≡ �̂�2(𝑃1, 𝑃3). (17)

We have the following decomposition:

�̃�2 − 𝑃2 = [�̂�2(𝑐2) − �̂�2(𝑐1)] − [𝐹2(𝑐2) − 𝐹2(𝑐1)]

= [�̂�2(𝑐2) − �̂�2(𝑐2)] − [�̂�2(𝑐1) − �̂�2(𝑐1)] +
{
[�̂�2(𝑐2) − �̂�2(𝑐1)] − [𝐹2(𝑐2) − 𝐹2(𝑐1)]

}
≡ 𝐼1 − 𝐼2 + 𝐼3. (18)
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The third term of Equation (18) can be written as

𝐼3 = [�̂�2(𝑐2) − �̂�2(𝑐1)] − [𝐹2(𝑐2) − 𝐹2(𝑐1)]

=
1

𝑛2

𝑛2∑
𝑗=1

[𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2) − 𝑃2]

=
1

𝑁

𝑛1+𝑛2∑
𝑙=𝑛1+1

𝑁

𝑛2
[𝐼(𝑐1 < 𝑍𝑙 ≤ 𝑐2) − 𝑃2]. (19)

From the Bahadur representation for the sample quantiles 𝑐1 and 𝑐2 (Ghosh, 1971),

𝑐1 − 𝑐1 =

𝑃1 −
1

𝑛1

∑𝑛1
𝑗=1

𝐼(𝑌1,𝑗 ≤ 𝑐1)

𝑓1(𝑐1)
+ 𝑜𝑝(𝑛1

−
1

2 ),

𝑐2 − 𝑐2 =

1

𝑛3

∑𝑛3
𝑗=1

𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3

𝑓3(𝑐2)
+ 𝑜𝑝(𝑛3

−
1

2 ), (20)

it follows that

𝐼2 = �̂�2(𝑐1) − �̂�2(𝑐1) = ∫ [𝐼(𝑦 ≤ 𝑐1) − 𝐼(𝑦 ≤ 𝑐1)]𝑑�̂�2(𝑦)

= ∫ [𝐼(𝑦 ≤ 𝑐1) − 𝐼(𝑦 ≤ 𝑐1)]𝑑𝐹2(𝑦) + 𝑜𝑝(𝑛
−1∕2

2
)

= 𝑓2(𝑐1)(𝑐1 − 𝑐1) + 𝑜𝑝(𝑛
−1∕2

2
+ 𝑛

−1∕2

1
)

= −
1

𝑛1

𝑓2(𝑐1)

𝑓1(𝑐1)

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1] + 𝑜𝑝(𝑛
−1∕2

2
+ 𝑛

−1∕2

1
)

= −
1

𝑁

𝑛1∑
𝑙=1

𝑁

𝑛1

𝑓2(𝑐1)

𝑓1(𝑐1)
[𝐼(𝑍𝑙 ≤ 𝑐1) − 𝑃1] + 𝑜𝑝(𝑁

−1∕2), (21)

𝐼1 = �̂�2(𝑐2) − �̂�2(𝑐2) = ∫ [𝐼(𝑦 ≤ 𝑐2) − 𝐼(𝑦 ≤ 𝑐2)]𝑑�̂�2(𝑦)

= ∫ [𝐼(𝑦 ≤ 𝑐2) − 𝐼(𝑦 ≤ 𝑐2)]𝑑𝐹2(𝑦) + 𝑜𝑝(𝑛
−1∕2

2
)

= 𝑓2(𝑐2)(𝑐2 − 𝑐2) + 𝑜𝑝(𝑛
−1∕2

2
+ 𝑛

−1∕2

3
)

=
1

𝑛3

𝑓2(𝑐2)

𝑓3(𝑐2)

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3] + 𝑜𝑝(𝑛
−1∕2

2
+ 𝑛

−1∕2

3
)

=
1

𝑁

𝑁∑
𝑙=𝑛1+𝑛2+1

𝑁

𝑛3

𝑓2(𝑐2)

𝑓3(𝑐2)
[𝐼(𝑍𝑙 > 𝑐2) − 𝑃3] + 𝑜𝑝(𝑁

−1∕2). (22)

Therefore,

�̃�2 − 𝑃2 =
1

𝑁

𝑁∑
𝑙=1

𝑊𝑙(𝑃1, 𝑃2, 𝑃3) + 𝑜𝑝(𝑁
−1∕2), (23)
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HAI et al. 7 of 27

where

𝑊𝑙(𝑃1, 𝑃2, 𝑃3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑁

𝑛1

𝑓2(𝑐1)

𝑓1(𝑐1)
[𝐼(𝑍𝑙 ≤ 𝑐1) − 𝑃1], 𝑙 = 1, … , 𝑛1,

𝑁

𝑛2
[𝐼(𝑐1 < 𝑍𝑙 ≤ 𝑐2) − 𝑃2], 𝑙 = 𝑛1 + 1,… , 𝑛1 + 𝑛2,

𝑁

𝑛3

𝑓2(𝑐2)

𝑓3(𝑐2)
[𝐼(𝑍𝑙 > 𝑐2) − 𝑃3], 𝑙 = 𝑛1 + 𝑛2 + 1,… ,𝑁,

(24)

is called the influence function of �̃�2.
From Equation (23), we can get the following asymptotic distribution of the empirical estimator �̃�2 for 𝑃2.

Proposition 1. Assume that 𝐹1, 𝐹2, and 𝐹3 are continuous distribution functions with density functions 𝑓1, 𝑓2, and 𝑓3,
respectively,𝑓′

2
(𝑥) is bounded in neighborhoods of 𝑐1 = 𝐹−1

1
(𝑃1), and 𝑐2 = 𝐹−1

3
(1 − 𝑃3),𝑓1(𝑐1), and𝑓3(𝑐2) are strictly positive,

𝑓2(𝑥)

𝑓1(𝑥)
is bounded in a neighborhood of 𝑐1, and

𝑓2(𝑥)

𝑓3(𝑥)
is bounded in a neighborhood of 𝑐2. If lim

𝑛1

𝑛2
= 𝜌1 (0 < 𝜌1 < ∞), lim 𝑛3

𝑛2
=

𝜌2 (0 < 𝜌2 < ∞), and lim 𝑛1

𝑛3
= 𝜌3 (0 < 𝜌3 < ∞), then

√
𝑁(�̃�2 − 𝑃2)

𝑑
→ 𝑁(0, 𝜎2), (25)

where𝑁 = 𝑛1 + 𝑛2 + 𝑛3, and

𝜎2 = (1 + 𝜌−1
1

+ 𝜌−1
3
)𝑃1(1 − 𝑃1)

𝑓2
2
[𝐹−1

1
(𝑃1)]

𝑓2
1
[𝐹−1

1
(𝑃1)]

+ (1 + 𝜌1 + 𝜌2)𝑃2(1 − 𝑃2)

+(1 + 𝜌−1
2

+ 𝜌3)𝑃3(1 − 𝑃3)
𝑓2
2
[𝐹−1

3
(1 − 𝑃3)]

𝑓2
3
[𝐹−1

3
(1 − 𝑃3)]

.

(26)

Dong and Tian (2015) derived a similar result to Proposition 1 using a heuristic approach. To derive the influence func-
tion of �̃�2, we provide a rigorous proof of Proposition 1 in the Appendix. Proposition 1 can be used to construct a normal
approximation-based confidence interval for 𝑃2 if we can get a good estimate for 𝜎2. But estimating 𝜎2 involves estima-
tion of unknown densities and quantiles. To avoid the complex variance estimation, we propose the following influence
function-based EL method for inference on 𝑃2.
Based on the influence function in (24), an EL for the sensitivity 𝑃2 to the early diseased stage at a given pair of (𝑃1, 𝑃3)

can be defined as follows:

𝐿𝐼𝐹(𝑃2) = sup
𝒑

{
𝑁∏
𝑙=1

𝑝𝑙 ∶

𝑁∑
𝑙=1

𝑝𝑙 = 1,

𝑁∑
𝑙=1

𝑝𝑙�̂�𝑙(𝑃1, 𝑃2, 𝑃3) = 0

}
, (27)

where𝒑 = (𝑝1, … , 𝑝𝑁) is a probability vector and �̂�𝑙(𝑃2) is the estimated influence function of �̃�2which is given as follows:

�̂�𝑙(𝑃1, 𝑃2, 𝑃3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑁

𝑛1

𝑓2(𝑐1)

𝑓1(𝑐1)
[𝐼(𝑍𝑙 ≤ 𝑐1) − 𝑃1], 𝑙 = 1, … , 𝑛1,

𝑁

𝑛2
[𝐼(𝑐1 < 𝑍𝑙 ≤ 𝑐2) − 𝑃2], 𝑙 = 𝑛1 + 1,… , 𝑛1 + 𝑛2,

𝑁

𝑛3

𝑓2(𝑐2)

𝑓3(𝑐2)
[𝐼(𝑍𝑙 > 𝑐2) − 𝑃3], 𝑙 = 𝑛1 + 𝑛2 + 1,… ,𝑁,

(28)

where 𝑓𝑖 is a density estimator for 𝑓𝑖 , 𝑖 = 1, 2, 3. We use the oversmoothed bandwidth selector to select the bandwidth for
the Gaussian kernel function for 𝑓𝑖 as described in Dong and Tian (2015).
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8 of 27 HAI et al.

By the Lagrange multiplier, the maximization of Equation (27) is achieved at

𝑝𝑙 =
1

𝑁
[1 + 𝜆�̂�𝑙(𝑃1, 𝑃2, 𝑃3)]

−1, 𝑙 = 1, … ,𝑁, (29)

where 𝜆 ≡ 𝜆(𝑃2) is the solution to

1

𝑁

𝑁∑
𝑙=1

�̂�𝑙(𝑃1, 𝑃2, 𝑃3)

1 + 𝜆�̂�𝑙(𝑃1, 𝑃2, 𝑃3)
= 0. (30)

The corresponding empirical log-likelihood ratio statistic is

𝑙𝐼𝐹(𝑃2) = −

𝑁∑
𝑙=1

log{1 + 𝜆�̂�𝑙(𝑃1, 𝑃2, 𝑃3)}. (31)

The following theorem establishes the asymptotic distribution of 𝑙𝐼𝐹(𝑃2), and a proof is given in the Appendix.

Theorem 1. Assume that 𝐹1, 𝐹2, and 𝐹3 are continuous distribution functions with density functions 𝑓1, 𝑓2 , and 𝑓3, respec-
tively, 𝑓′

2
(𝑥) is bounded in neighborhoods of 𝑐1 = 𝐹−1

1
(𝑃1) and 𝑐2 = 𝐹−1

3
(1 − 𝑃3), 𝑓1(𝑐1) and 𝑓3(𝑐2) are strictly positive,

𝑓2(𝑥)

𝑓1(𝑥)

is bounded in a neighborhood of 𝑐1, and
𝑓2(𝑥)

𝑓3(𝑥)
is bounded in a neighborhood of 𝑐2. If lim

𝑛1

𝑛2
= 𝜌1 (0 < 𝜌1 < ∞), lim 𝑛3

𝑛2
= 𝜌2

(0 < 𝜌2 < ∞) , and lim 𝑛1

𝑛3
= 𝜌3 (0 < 𝜌3 < ∞), and 𝑃0

2
is the true value of sensitivity 𝑃2 to the early diseased stage at a fixed

level 𝑃1 of specificity and 𝑃3 of sensitivity to the fully diseased stage, then the asymptotic distribution of−2𝑙𝐼𝐹(𝑃02) is a standard
chi-squared distribution with one degree of freedom as 𝑛1, 𝑛2, 𝑛3 8→ ∞.

From Theorem 1, a 100(1 − 𝛼)% level influence function-based (IF) EL confidence interval for 𝑃2 can be constructed as
follows:

𝐶𝐼𝐼𝐹(𝑃2) = {𝑃2 ∶ −2𝑙𝐼𝐹(𝑃2) ≤ 𝜒2
1
(1 − 𝛼)}. (32)

This IF-based EL interval for 𝑃2 can be easily obtained using the algorithm for the standard EL method (see Hall & La
Scala, 1990) without estimation of the variance in Proposition 1 and the scale constant in the plug-in EL-based method of
Dong and Tian (2015).

Remark. In practice, it is possible that 1 + 𝜆�̂�𝑙(𝑃1, 𝑃2, 𝑃3) < 0 for an 𝑙 (𝑙 = 1, … ,𝑁) with a sample of real test results.
Under this situation, the adjusted empirical likelihood and the numerical algorithm by Chen et al. (2008) can be used for
the calculation of the empirical log-likelihood ratio statistic of the sensitivity 𝑃2.

4 BAYESIAN EMPIRICAL LIKELIHOODMETHOD

BEL can be used as the basis for Bayesian inference. As Lazar (2003) pointed out that EL has many asymptotic properties
similar to those of parametric likelihoods, BEL methods are naturally used to quantify uncertainty and can have good
small sample properties. With a similar motivation to BEL inference for sensitivity of two-stage diagnostic tests in Hai
et al. (2020), we propose two types of BEL methods for better interval estimation of sensitivity of a three-stage diagnostic
test to early stage disease in this section.

4.1 Bayesian empirical likelihood based on sensitivity

We follow Lazar (2003)’s idea to combine empirical likelihood 𝐿(𝑃2) with prior 𝜋(𝑃2) on 𝑃2 by the Bayesian theorem to
obtain a posterior:

𝜋(𝑃2|𝑑𝑎𝑡𝑎) ∝ 𝐿(𝑃2)𝜋(𝑃2). (33)
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HAI et al. 9 of 27

We consider reference priors, originally introduced by Bernardo (1979), and further developed in Berger and Bernardo
(1992), on 𝑃2 in this study. Reference priors only depend on the assumed model and the available data. In our problem,
we do not have a parametric model. Therefore, we follow Clarke and Yuan (2010) to derive reference priors for EL. The
following proposition gives the reference priors for the BEL method, where [𝐿(𝑃2)]𝑟𝑃1,𝑃2,𝑃3 in the plug-in EL is used as the
likelihood.

Proposition 2. The reference prior based on the relative entropy for the plug-in EL is

𝜋𝐸𝐿,1(𝑃2) = 𝛽(
3

2
,
3

2
), (34)

and the reference prior based on the Hellinger distance is

𝜋𝐸𝐿,2(𝑃2) = 𝛽(
1

2
,
1

2
), (35)

where 𝛽(𝑎, 𝑏) is the beta distribution with parameters 𝑎 and 𝑏.

The corresponding posterior is

𝜋𝐸𝐿(𝑃2|𝑌) ∝ 𝑛2∏
𝑗=1

[1 + �̃�(𝑃2)(�̂�𝑗 − 𝑃2)]
−𝑟𝑃1,𝑃2,𝑃3 𝜋𝐸𝐿(𝑃2), (36)

where 𝜋𝐸𝐿(𝑃2) = 𝜋𝐸𝐿,1(𝑃2), or 𝜋𝐸𝐿,2(𝑃2), and �̂�𝑗 = Φ[�̂�−1
1
(𝑃1), 𝑌2,𝑗, �̂�

−1
3
(1 − 𝑃3)], 𝑗 = 1, 2, … , 𝑛2. Based on these posteri-

ors,we can calculate equal-tail credible intervals for𝑃2. These twonewmethods are called as Bayesian empirical likelihood
1 (BEL1) and Bayesian empirical likelihood 2 (BEL2).
Similarly, to construct Bayesian credible intervals for 𝑃2 based on the influence function, we propose the following

reference priors on 𝑃2 for the BEL based on the influence function𝑊𝑙(𝑃1, 𝑃2, 𝑃3) in Equation (24):

𝜋𝐼𝐹,1(𝑃2) ∝

[
1

𝑛1
𝑃1(1 − 𝑃1)

𝑓2
2
[𝐹−1

1
(𝑃1)]

𝑓2
1
[𝐹−1

1
(𝑃1)]

+
1

𝑛2
𝑃2(1 − 𝑃2) +

1

𝑛3
𝑃3(1 − 𝑃3)

𝑓2
2
[𝐹−1

3
(1 − 𝑃3)]

𝑓2
3
[𝐹−1

3
(1 − 𝑃3)]

] 1

2

, (37)

and

𝜋𝐼𝐹,2(𝑃2) ∝

[
1

𝑛1
𝑃1(1 − 𝑃1)

𝑓2
2
[𝐹−1

1
(𝑃1)]

𝑓2
1
[𝐹−1

1
(𝑃1)]

+
1

𝑛2
𝑃2(1 − 𝑃2) +

1

𝑛3
𝑃3(1 − 𝑃3)

𝑓2
2
[𝐹−1

3
(1 − 𝑃3)]

𝑓2
3
[𝐹−1

3
(1 − 𝑃3)]

]−
1

2

. (38)

Both priors are proper since 𝜋𝐼𝐹,1(𝑃2) is bounded by a constant and 𝜋𝐼𝐹,2(𝑃2) is bounded by a beta distribution. In
practice, we use �̂�𝑙(𝑃1, 𝑃2, 𝑃3) to estimate the influence function 𝑊𝑙(𝑃1, 𝑃2, 𝑃3) and replace 𝑓1, 𝑓2, 𝑓3, 𝑐1, and 𝑐2 with
their estimates since they are generally unknown. The posterior based on this approach is then

𝜋𝐼𝐹(𝑃2|𝑍) ∝ 𝑁∏
𝑙=1

[1 + 𝜆(𝑃2)�̂�𝑙(𝑃1, 𝑃2, 𝑃3)]
−1𝜋𝐼𝐹(𝑃2), (39)

where 𝜋𝐼𝐹(𝑃2) = 𝜋𝐼𝐹,1(𝑃2), or 𝜋𝐼𝐹,2(𝑃2). Based on these posteriors, we can calculate equal-tail credible intervals for 𝑃2.
Therefore, we have two more new intervals for 𝑃2: the first one is called the Bayesian influence function-based empirical
likelihood 1 (BIF1) interval and the second one is called the Bayesian influence function-based empirical likelihood 2
(BIF2) interval.
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10 of 27 HAI et al.

4.2 Bayesian pseudo empirical likelihood based on probability vector

Rao andWu (2010) proposed Bayesian pseudo-EL (BpEL)methods for complex surveys. Inspired by their methods, in this
section, we develop BEL based on probability vector (𝑝1, … , 𝑝𝑙) instead of 𝑃2. We treat (𝑝1, … , 𝑝𝑙) as unknown parameters
and the EL function is defined as

𝐿𝐸𝐿(𝑝1, … , 𝑝𝑙) =

𝑙∏
𝑖=1

𝑝𝑖, (40)

where 𝑙 = 𝑛2 for the plug-in EL, and 𝑙 = 𝑁 for the influence function-based EL. Consider Dirichlet prior 𝐷(𝛼1, … , 𝛼𝑙) on
(𝑝1, … , 𝑝𝑙):

𝜋(𝑝1, … , 𝑝𝑙) = 𝑐(𝛼1, … , 𝛼𝑙)

𝑙∏
𝑖=1

𝑝
𝛼𝑖−1

𝑖
, (41)

where 𝑐(𝛼1, … , 𝛼𝑙) = Γ(
∑𝑙

𝑖=1
𝛼𝑖)∕

∏𝑙

𝑖=1
Γ(𝛼𝑖). The posterior distribution of (𝑝1, … , 𝑝𝑙) given the data is Dirichlet 𝐷(1 +

𝛼1, … , 1 + 𝛼𝑙) and is given by

𝜋(𝑝1, … , 𝑝𝑙|𝑑𝑎𝑡𝑎) = 𝑐(1 + 𝛼1, … , 1 + 𝛼𝑛)

𝑙∏
𝑖=1

𝑝
𝛼𝑖
𝑖
. (42)

The posterior of the early stage sensitivity 𝑃2 satisfies the following equation:

𝑙∑
𝑖=1

𝑝𝑖�̂�𝑖(𝑃2) = 0, (43)

where �̂�𝑖(𝑃2) is an estimating/influence function and (𝑝1, … , 𝑝𝑙) follows the Dirichlet distribution 𝐷(1 + 𝛼1, … , 1 + 𝛼𝑙).
In practice, we can generate samples of (𝑝1, … , 𝑝𝑙) from 𝐷(1 + 𝛼1, … , 1 + 𝛼𝑙), and by solving Equation (43), we get the
posterior samples of 𝑃2. Based on these posterior samples, we can calculate the equal-tail credible intervals for sensitivity
𝑃2.
Similar to Section 4.1, we consider two types of EL: EL in Equation (5) as in the plug-in EL and the influence function EL

in Equation (27). We call them BpEL and Bayesian pseudo Influence Function-based EL (BpIF), respectively. For BpEL,
we use �̂�𝐸𝐿𝑃(𝑃1, 𝑃2, 𝑃3) ≡ �̂�𝑗 − 𝑃2 to replace �̂�𝑖(𝑃2) in Equation (43) and consider𝐷(𝑟∗, … , 𝑟∗) and𝐷(𝑟∗ + 1

𝑛2
, … , 𝑟∗ +

1

𝑛2
)

as the priors (labeled as BpEL1 and BpEL2, respectively), where 𝑟∗ = 𝑟𝑃1,𝑃2,𝑃3 is the estimate defined in Equation (10) in
Section 2 for the scale constant. For BpIF, we use �̂�𝑙(𝑃1, 𝑃2, 𝑃3) to replace �̂�𝑖(𝑃2) in Equation (43) and consider 𝐷(1, … , 1)

and 𝐷(1 + 1

𝑁
,… , 1 +

1

𝑁
) as the priors (labeled as BpIF1 and BpIF2, respectively).

5 SIMULATION STUDY

Simulation studies are conducted to examine the finite sample performance of the proposed intervals for sensitivity of a test
to early stage disease: influence function-based EL (IF) interval, Bayesian influence function EL (BIF1 and BIF2) intervals
with reference priors 𝜋𝐼𝐹,1(𝑃2) and 𝜋𝐼𝐹,2(𝑃2), Bayesian EL (BEL1 and BEL2) intervals with reference priors 𝜋𝐸𝐿,1(𝑃2)

and 𝜋𝐸𝐿,2(𝑃2), Bayesian pseudo influence function EL (BpIF1 and BpIF2) intervals, and Bayesian pseudo EL (BpEL1 and
BpEL2) intervals. We compare them to the existing ELP and ELB intervals proposed by Dong and Tian (2015). For the
purpose of comparison, we also include the normal approximation (NA) interval based on Proposition 1 by using �̃�2 = ̂̄𝑃2
as the point estimate and �̂�2

̂̄𝑃2
in Equation (12) as the variance estimate.

We evaluate these approaches under scenarios where the underlying distributions are normal distributions, beta dis-
tributions, and the combined scenario where the normality assumptions cannot be met, that is, a gamma distribution for
the nondiseased, a log-normal distribution for the early diseased, and aWeibull distribution for the fully diseased groups.
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HAI et al. 11 of 27

TABLE 2 Coverage probabilities of various 95% level intervals for 𝑃2 under Normal distributions with 𝑃2 = 0.8. NA, ELB, ELP, and IF
intervals are confidence intervals, the other intervals are credible intervals

Sample size NA ELB ELP BEL1 BEL2 BpEL1 BpEL2 IF BIF1 BIF2 BpIF1 BpIF2
(𝜇1, 𝜎1) = (0, 1), (𝜇2, 𝜎2) = (3, 1.2), (𝜇3, 𝜎3) = (5.858, 2), 𝑃2 = 0.8, 𝑃1 = 𝑃3 = 0.8

(10,10,10) 0.798 0.990 0.991 0.982 0.988 0.983 0.966 0.872 0.927 0.919 0.843 0.838
(30,30,30) 0.896 0.853 0.845 0.970 0.985 0.960 0.949 0.935 0.939 0.939 0.926 0.928
(50,30,30) 0.872 0.827 0.827 0.957 0.960 0.960 0.947 0.914 0.923 0.925 0.918 0.918
(50,50,50) 0.909 0.870 0.862 0.964 0.963 0.939 0.935 0.933 0.953 0.943 0.925 0.927
(100,100,100) 0.939 0.944 0.944 0.950 0.953 0.948 0.944 0.947 0.948 0.946 0.926 0.922
(100,50,50) 0.914 0.867 0.867 0.959 0.971 0.937 0.932 0.942 0.952 0.945 0.919 0.917
(100,100,50) 0.912 0.911 0.905 0.960 0.962 0.932 0.926 0.936 0.956 0.944 0.919 0.919
(𝜇1, 𝜎1) = (0, 1), (𝜇2, 𝜎2) = (4, 1.2), (𝜇3, 𝜎3) = (7.625, 2), 𝑃2 = 0.8, 𝑃1 = 𝑃3 = 0.9

(10,10,10) 0.668 0.997 0.994 0.986 0.997 0.989 0.967 0.643 0.839 0.677 0.730 0.723
(30,30,30) 0.828 0.776 0.783 0.974 0.975 0.930 0.913 0.883 0.852 0.850 0.877 0.874
(50,30,30) 0.806 0.781 0.759 0.965 0.961 0.920 0.903 0.858 0.836 0.825 0.856 0.854
(50,50,50) 0.852 0.799 0.796 0.960 0.948 0.914 0.904 0.885 0.908 0.891 0.889 0.887
(100,100,100) 0.881 0.906 0.906 0.939 0.930 0.925 0.914 0.902 0.920 0.912 0.923 0.923
(100,50,50) 0.857 0.812 0.791 0.952 0.953 0.892 0.884 0.889 0.899 0.891 0.892 0.891
(100,100,50) 0.857 0.865 0.842 0.948 0.934 0.878 0.870 0.894 0.901 0.893 0.867 0.866

Note: Abbreviations used in Tables 2–7 are defined in Table 1.

Sample sizes (𝑛1, 𝑛2, 𝑛3) are set as (10, 10, 10), (30, 30, 30), (50, 30, 30), (50, 50, 50), (100, 100, 100), (100, 50, 50), and (100,
100, 50). With a fixed 80% or 90% specificity and a fixed 80% or 90% sensitivity to the fully diseased stage, the parameters
for the distributions are chosen accordingly so that 𝑃2 equals 80% or 90%. Under each distribution scenario, there are four
settings corresponding to different levels of 𝑃1 and 𝑃3, and the true value of 𝑃2: (i) 𝑃1 = 𝑃3= 0.8 and 𝑃2 = 0.8, (ii) 𝑃1 = 𝑃3=

0.9 and 𝑃2 = 0.8, (iii) 𝑃1 = 𝑃3 = 0.8 and 𝑃2 = 0.9, and (iv) 𝑃1 = 𝑃3 = 0.9 and 𝑃2 = 0.9. Under each setting, 5000 random
samples are generated. With a simulated sample, it is possible that 1 + 𝜆�̂�𝑙(𝑃1, 𝑃2, 𝑃3) < 0 for an 𝑙 (𝑙 = 1, … ,𝑁), which
can occur with not insignificant rate (possibly due to (1) the poor density estimates and (2) the poor estimates for 𝑐1 and 𝑐2)
in the simulation runs when sample sizes are small (i.e., (10,10,10), (30,30,30), (50,50,50)), and it can have some impacts in
the practical use of the IF-based EL intervals (under this situation, the adjusted empirical likelihood by Chen et al., 2008,
can be used for the calculation of the empirical log-likelihood ratio statistic of the sensitivity 𝑃2. See the Remark at the end
of Section 3). We also notice that the new IF-based EL method as well as the existing EL-based ELP and ELB methods all
present problems of the slow convergence rate (see Figures A1–A3 in the Appendix for someQQ plots of the empirical log-
likelihood ratio statistics). In our simulation study, −2𝑙𝐼𝐹(𝑃2) is set to be∞ when one of the terms {1 + 𝜆�̂�𝑙(𝑃1, 𝑃2, 𝑃3)}s
is negative. The simulation results are presented in Tables 2–7 and Figures 1–3.
Under the scenariowith normal distributions (see Tables 2 and 3 andFigure 1), we observe that the IF-related confidence

intervals (IF, BIF1, BIF2, BpIF1, and BpIF2) generally undercover 𝑃2 (the sensitivity of a test to early stage disease). The
existing confidence intervals (NA, ELP, andELB) also undercover𝑃2 except the small sample size (10, 10, 10). Newmethods
always have better performance compared toNA,ELP, andELBmethods in all settings considered here. In particular, BEL1
has the best overall performance in terms of coverage probability close to 95%. Bayesian and Bayesian pseudo approaches
generally have similar or improved performance over ELP, ELB, or IF. IF-function relatedmethods have poor performance
when sample size is small. The possible reason is that small sample sizes result in the poor density estimation involved
in the IF-related methods. Comparing the results from the normal distribution settings (i) and (iii) with those from the
normal distribution settings (ii) and (iv) which have higher specificity(𝑃1) and sensitivity(𝑃3) to the fully diseased group,
we can see that the performance of NA, ELB, ELP, and IF related methods all depends on the degree of separation of test
outcomes in the fully diseased, early diseased, and nondiseased groups. Under the higher specificity and sensitivity to the
fully diseased group, they have lower coverage probabilities. However, the performance of BEL1, BEL2, BpEL1, and BpEL2
does not obviously change with different 𝑃1 and 𝑃3. Comparing the results from the normal distribution setting (i) with
(iii) or normal distribution setting (ii) with (iv) which have fixed 𝑃1 and 𝑃3 but higher true value of 𝑃2, we observe that
ELP, ELB, BEL2, BpEL1, IF, BIF1, and BIF2 generally have similar or poorer finite sample performance with the higher
true value of 𝑃2 and other methods perform similarly or slightly better. For example, when sample size is (100,100,100)
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TABLE 3 Coverage probabilities of various 95% level intervals for 𝑃2 under Normal distributions with 𝑃2 = 0.9. NA, ELB, ELP, and IF
are confidence intervals, the other intervals are credible intervals

Sample size NA ELB ELP BEL1 BEL2 BpEL1 BpEL2 IF BIF1 BIF2 BpIF1 BpIF2
(𝜇1, 𝜎1) = (0, 1), (𝜇2, 𝜎2) = (3, 1.2), (𝜇3, 𝜎3) = (6.515, 2), 𝑃2 = 0.9, 𝑃1 = 𝑃3 = 0.8

(10,10,10) 0.762 0.980 0.982 0.931 0.979 0.975 0.958 0.866 0.915 0.929 0.829 0.824
(30,30,30) 0.914 0.827 0.795 0.950 0.985 0.985 0.977 0.906 0.918 0.908 0.932 0.932
(50,30,30) 0.912 0.805 0.781 0.931 0.977 0.985 0.981 0.871 0.868 0.867 0.936 0.935
(50,50,50) 0.918 0.816 0.809 0.952 0.982 0.966 0.963 0.931 0.915 0.914 0.944 0.943
(100,100,100) 0.942 0.908 0.905 0.950 0.970 0.963 0.961 0.961 0.966 0.963 0.955 0.954
(100,50,50) 0.926 0.812 0.806 0.946 0.980 0.970 0.964 0.931 0.942 0.934 0.942 0.944
(100,100,50) 0.924 0.882 0.876 0.956 0.977 0.954 0.953 0.956 0.919 0.917 0.945 0.945
(𝜇1, 𝜎1) = (0, 1), (𝜇2, 𝜎2) = (4, 1.2), (𝜇3, 𝜎3) = (8.189, 2), 𝑃2 = 0.9, 𝑃1 = 𝑃3 = 0.9

(10,10,10) 0.619 0.973 0.988 0.944 0.987 0.977 0.960 0.591 0.880 0.670 0.714 0.713
(30,30,30) 0.849 0.769 0.778 0.948 0.983 0.989 0.986 0.804 0.692 0.708 0.887 0.886
(50,30,30) 0.845 0.774 0.781 0.937 0.982 0.986 0.979 0.793 0.691 0.713 0.864 0.864
(50,50,50) 0.864 0.734 0.757 0.952 0.984 0.963 0.955 0.888 0.802 0.808 0.901 0.905
(100,100,100) 0.899 0.845 0.867 0.944 0.953 0.945 0.940 0.929 0.879 0.875 0.938 0.936
(100,50,50) 0.882 0.763 0.753 0.935 0.973 0.958 0.953 0.887 0.870 0.866 0.906 0.905
(100,100,50) 0.878 0.804 0.789 0.957 0.963 0.911 0.905 0.916 0.794 0.797 0.891 0.891

TABLE 4 Coverage probabilities of various 95% level intervals for 𝑃2 under Beta distributions with 𝑃2 = 0.8. NA, ELB, ELP, and IF are
confidence intervals, the other intervals are credible intervals

Sample size NA ELB ELP BEL1 BEL2 BpEL1 BpEL2 IF BIF1 BIF2 BpIF1 BpIF2
(𝛼1, 𝛽1) = (2, 6), (𝛼2, 𝛽2) = (8, 6), (𝛼3, 𝛽3) = (21.3, 6), 𝑃2 = 0.8, 𝑃1 = 𝑃3 = 0.8

(10,10,10) 0.865 0.990 0.986 0.973 0.987 0.988 0.980 0.885 0.938 0.912 0.855 0.847
(30,30,30) 0.931 0.907 0.894 0.968 0.976 0.968 0.960 0.961 0.956 0.953 0.950 0.949
(50,30,30) 0.925 0.904 0.887 0.959 0.975 0.970 0.960 0.962 0.956 0.953 0.942 0.943
(50,50,50) 0.930 0.926 0.934 0.964 0.961 0.953 0.946 0.948 0.961 0.951 0.941 0.942
(100,100,100) 0.944 0.972 0.962 0.963 0.957 0.955 0.954 0.954 0.962 0.957 0.963 0.964
(100,50,50) 0.936 0.946 0.938 0.963 0.969 0.964 0.957 0.955 0.957 0.949 0.954 0.953
(100,100,50) 0.940 0.970 0.961 0.964 0.957 0.946 0.944 0.948 0.973 0.957 0.961 0.961
(𝛼1, 𝛽1) = (1, 6), (𝛼2, 𝛽2) = (6, 6), (𝛼3, 𝛽3) = (15.2, 6), 𝑃2 = 0.8, 𝑃1 = 𝑃3 = 0.9

(10,10,10) 0.791 0.995 0.992 0.990 0.996 0.994 0.984 0.706 0.772 0.753 0.717 0.714
(30,30,30) 0.900 0.859 0.808 0.981 0.965 0.934 0.918 0.894 0.894 0.879 0.851 0.848
(50,30,30) 0.916 0.877 0.852 0.979 0.965 0.931 0.917 0.914 0.915 0.897 0.876 0.878
(50,50,50) 0.918 0.882 0.844 0.965 0.938 0.910 0.899 0.882 0.918 0.884 0.875 0.868
(100,100,100) 0.940 0.963 0.924 0.953 0.934 0.921 0.915 0.911 0.917 0.904 0.907 0.901
(100,50,50) 0.925 0.924 0.902 0.962 0.960 0.937 0.926 0.931 0.913 0.906 0.918 0.916
(100,100,50) 0.919 0.962 0.928 0.959 0.940 0.916 0.913 0.908 0.964 0.933 0.907 0.904

with 𝑃1 = 𝑃3 = 0.8, the coverage probability of ELB dropped from 0.944 to 0.906 when the true value of 𝑃2 is changed
from 0.8 to 0.9.
The simulation results under the Beta distribution setting are reported in Tables 4 and 5 and Figure 2. Similar to normal

distribution settings, we observe that NA, ELP, ELB intervals, and FI-related intervals (IF, BIF1, BIF2, BpIF1, and BpIF2)
generally have undercoverage problems. New intervals always have better performance, and BEL1 interval has the best
overall performance in terms of coverage probability close to 95% except the first setting where IF-related intervals work
well. The performance of NA, ELB, ELP, BpEL1, BpEL2, and IF related intervals all depend on the degree of separation of
test outcomes in the fully diseased, early diseased, and nondiseased groups. Under higher specificity and sensitivity to the
fully diseased group, they have slightly lower coverage probabilities. However, performances of BEL1 and BEL2 intervals
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TABLE 5 Coverage probabilities of various 95% level intervals for 𝑃2 under Beta distributions with 𝑃2 = 0.9. NA, ELB, ELP, and IF are
confidence intervals, the other intervals are credible intervals

Sample size NA ELB ELP BEL1 BEL2 BpEL1 BpEL2 IF BIF1 BIF2 BpIF1 BpIF2
(𝛼1, 𝛽1) = (2, 6), (𝛼2, 𝛽2) = (8, 6), (𝛼3, 𝛽3) = (31.8, 6), 𝑃2 = 0.9, 𝑃1 = 𝑃3 = 0.8

(10,10,10) 0.728 0.985 0.981 0.929 0.988 0.988 0.983 0.813 0.921 0.893 0.777 0.772
(30,30,30) 0.920 0.817 0.822 0.955 0.984 0.987 0.987 0.850 0.850 0.850 0.921 0.920
(50,30,30) 0.923 0.824 0.805 0.947 0.974 0.983 0.981 0.860 0.848 0.849 0.914 0.916
(50,50,50) 0.914 0.815 0.815 0.951 0.982 0.969 0.965 0.918 0.909 0.902 0.919 0.918
(100,100,100) 0.940 0.922 0.919 0.955 0.969 0.959 0.956 0.956 0.962 0.954 0.963 0.963
(100,50,50) 0.940 0.843 0.836 0.954 0.980 0.961 0.956 0.936 0.967 0.950 0.947 0.948
(100,100,50) 0.937 0.910 0.917 0.953 0.975 0.964 0.964 0.952 0.923 0.921 0.963 0.961
(𝛼1, 𝛽1) = (1, 6), (𝛼2, 𝛽2) = (6, 6), (𝛼3, 𝛽3) = (20.4, 6), 𝑃2 = 0.9, 𝑃1 = 𝑃3 = 0.9

(10,10,10) 0.787 0.966 0.989 0.956 0.986 0.987 0.972 0.636 0.896 0.721 0.686 0.679
(30,30,30) 0.889 0.786 0.800 0.960 0.986 0.990 0.989 0.816 0.808 0.801 0.901 0.901
(50,30,30) 0.906 0.789 0.782 0.945 0.974 0.981 0.977 0.820 0.807 0.811 0.901 0.902
(50,50,50) 0.903 0.745 0.803 0.958 0.980 0.950 0.944 0.909 0.894 0.885 0.918 0.916
(100,100,100) 0.931 0.877 0.924 0.961 0.973 0.962 0.958 0.954 0.969 0.956 0.951 0.950
(100,50,50) 0.911 0.816 0.827 0.959 0.979 0.957 0.954 0.929 0.929 0.910 0.929 0.929
(100,100,50) 0.929 0.874 0.913 0.966 0.968 0.954 0.955 0.944 0.917 0.915 0.941 0.939

TABLE 6 Coverage probabilities of various 95% level intervals for 𝑃2 under combined distributions with 𝑃2 = 0.8. NA, ELB, ELP, and IF
are confidence intervals, the other intervals are credible intervals

Sample size NA ELB ELP BEL1 BEL2 BpEL1 BpEL2 IF BIF1 BIF2 BpIF1 BpIF2
𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) = (4, 10), 𝐿𝑁(𝜇, 𝜎) = (1, 0.5),𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑎, 𝑏) = (4.07, 6), 𝑃2 = 0.8, 𝑃1 = 𝑃3 = 0.8

(10,10,10) 0.852 0.983 0.982 0.957 0.979 0.986 0.970 0.876 0.914 0.895 0.869 0.871
(30,30,30) 0.920 0.902 0.911 0.968 0.977 0.952 0.940 0.944 0.936 0.934 0.936 0.934
(50,30,30) 0.921 0.903 0.910 0.970 0.970 0.947 0.938 0.940 0.929 0.934 0.938 0.932
(50,50,50) 0.926 0.930 0.938 0.951 0.959 0.948 0.942 0.948 0.958 0.948 0.945 0.944
(100,100,100) 0.938 0.957 0.960 0.961 0.957 0.957 0.953 0.956 0.959 0.958 0.950 0.948
(100,50,50) 0.928 0.924 0.941 0.964 0.952 0.941 0.939 0.939 0.959 0.955 0.938 0.937
(100,100,50) 0.914 0.946 0.956 0.964 0.959 0.954 0.957 0.953 0.950 0.941 0.948 0.952
𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) = (4, 10), 𝐿𝑁(𝜇, 𝜎) = (0.5, 0.5),𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑎, 𝑏) = (2.8, 6), 𝑃2 = 0.8, 𝑃1 = 𝑃3 = 0.9

(10,10,10) 0.754 0.996 0.997 0.991 0.995 0.993 0.989 0.719 0.795 0.721 0.788 0.787
(30,30,30) 0.886 0.850 0.852 0.991 0.981 0.955 0.949 0.928 0.922 0.916 0.908 0.910
(50,30,30) 0.870 0.840 0.849 0.982 0.973 0.946 0.934 0.910 0.897 0.896 0.901 0.897
(50,50,50) 0.907 0.886 0.905 0.971 0.967 0.945 0.939 0.934 0.949 0.940 0.928 0.928
(100,100,100) 0.917 0.954 0.952 0.970 0.962 0.949 0.946 0.944 0.955 0.949 0.937 0.938
(100,50,50) 0.891 0.871 0.890 0.968 0.953 0.931 0.926 0.928 0.939 0.930 0.921 0.920
(100,100,50) 0.887 0.926 0.916 0.970 0.947 0.932 0.929 0.930 0.938 0.925 0.924 0.924

do not obviously change when 𝑃1 and 𝑃3 increase. Comparing the results from the beta distribution setting (i) with (iii) or
beta distribution setting (ii) with (iv) which have fixed 𝑃1 and 𝑃3 but higher true value of 𝑃2, we note that BEL1, BpEL1,
and BpEL2 intervals generally have similar or better finite sample performance with higher true value of 𝑃2, and other
intervals perform similarly or slightly worse except BpIF1 and BpIF2, which have no obvious trend. Specifically, BpIF1
and BpIF2 intervals perform very well when 𝑃1 = 𝑃3 = 0.8 and true 𝑃2 = 0.8 and have similar or slightly lower coverage
probabilities than that with 𝑃2 = 0.9. However, BpIF1 and BpIF2 intervals perform better when the true value of 𝑃2 is
changed from 0.8 to 0.9.
The simulation results under the combined distribution settings are reported in Tables 6 and 7 and Figure 3. Clearly, the

new methods always have better performance compared to ELB and ELP. However, BEL1 does not always have the best
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TABLE 7 Coverage probabilities of various 95% level intervals for 𝑃2 under combined distributions with 𝑃2 = 0.9. NA, ELB, ELP, and IF
are confidence intervals, the other intervals are credible intervals

Sample size NA ELB ELP BEL1 BEL2 BpEL1 BpEL2 IF BIF1 BIF2 BpIF1 BpIF2
𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) = (4, 10), 𝐿𝑁(𝜇, 𝜎) = (1, 0.5),𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑎, 𝑏) = (4.07, 7.49), 𝑃2 = 0.9, 𝑃1 = 𝑃3 = 0.8

(10,10,10) 0.689 0.977 0.990 0.923 0.978 0.976 0.970 0.764 0.836 0.805 0.745 0.736
(30,30,30) 0.911 0.820 0.810 0.974 0.990 0.995 0.994 0.838 0.831 0.827 0.932 0.933
(50,30,30) 0.910 0.793 0.829 0.952 0.982 0.986 0.984 0.821 0.805 0.804 0.927 0.928
(50,50,50) 0.923 0.833 0.853 0.946 0.968 0.950 0.949 0.914 0.892 0.897 0.936 0.939
(100,100,100) 0.940 0.946 0.922 0.967 0.974 0.965 0.960 0.965 0.964 0.962 0.960 0.959
(100,50,50) 0.928 0.818 0.849 0.956 0.982 0.952 0.948 0.903 0.925 0.924 0.933 0.932
(100,100,50) 0.900 0.917 0.917 0.961 0.972 0.957 0.956 0.955 0.884 0.884 0.948 0.948
𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) = (4, 10), 𝐿𝑁(𝜇, 𝜎) = (1, 0.5),𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑎, 𝑏) = (4.25, 6), 𝑃2 = 0.9, 𝑃1 = 𝑃3 = 0.9

(10,10,10) 0.629 0.987 0.989 0.937 0.990 0.985 0.981 0.583 0.765 0.605 0.670 0.668
(30,30,30) 0.906 0.798 0.816 0.959 0.983 0.990 0.988 0.805 0.745 0.751 0.910 0.910
(50,30,30) 0.900 0.812 0.805 0.958 0.984 0.991 0.988 0.801 0.740 0.751 0.914 0.914
(50,50,50) 0.904 0.822 0.807 0.958 0.979 0.957 0.952 0.904 0.852 0.855 0.925 0.924
(100,100,100) 0.926 0.924 0.929 0.958 0.961 0.948 0.942 0.944 0.932 0.930 0.940 0.939
(100,50,50) 0.910 0.822 0.819 0.960 0.977 0.949 0.949 0.884 0.842 0.849 0.929 0.929
(100,100,50) 0.895 0.905 0.918 0.973 0.965 0.947 0.947 0.946 0.834 0.839 0.937 0.939

F IGURE 1 Boxplots of coverage probabilities under normal distribution setting.

overall performance. Bayesian pseudo empirical likelihood methods(BpEL1, BpEL2, BpIF1, and BpIF2) also perform well
in most of the settings considered here. IF-related methods also work well when true 𝑃2 = 0.8. The performance of ELB,
ELP, and IF related methods all depend on the degree of separation of test outcomes in the fully diseased, early diseased,
and nondiseased groups. Under higher specificity and sensitivity to the fully diseased group, they have slightly lower
coverage probabilities. The performances of NA, BEL1, BEL2, BpEL1, and BpEL2 intervals do not obviously change when
𝑃1 and 𝑃3 increase. Comparing the results from the combined distribution setting (i) with (iii) or combined distribution
setting (ii) with (iv) which have fixed 𝑃1 and 𝑃3 but higher true value of 𝑃2, we can see that BEL1, BEL2, BpEL1, BpEL2,
BpIF1, and BpIF2 intervals generally have similar or better finite sample performance with higher true value of 𝑃2, and
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F IGURE 2 Boxplots of 95% coverage probabilities under beta distribution setting

F IGURE 3 Boxplots of 95% coverage probabilities under the combined distribution setting

performances of other intervals are obviously worse when the true value of 𝑃2 is changed from 0.8 to 0.9, especially the
IF and Bayesian IF intervals. The possible reason might be it is more difficult to obtain a better density estimate when the
true value of 𝑃2 is higher (which means a higher degree of separation of early diseased test outcomes from other groups).
In summary, new Bayesian and Bayesian pseudo empirical likelihood intervals, especially BEL1 interval, are consistent

and have coverage probabilities closer to the nominal confidence level than other intervals in all settings. The performance
of IF and Bayesian IF methods is acceptable in some settings.
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16 of 27 HAI et al.

F IGURE 4 Estimated densities of ADAS11 values in the ADNI data

TABLE 8 Point estimates and 95% level credible intervals for the sensitivity 𝑃2 of ADAS11 to MCI patients

Point estimate CI
𝑃1 = 𝑃3 = 0.3

BEL1 0.923 (0.846 , 0.931)
BEL2 0.923 (0.851 , 0.934)

𝑃1 = 𝑃3 = 0.4

BEL1 0.864 (0.759 , 0.871)
BEL2 0.864 (0.763 , 0.874)

𝑃1 = 𝑃3 = 0.8

BEL1 0.280 (0.120 , 0.299)
BEL2 0.280 (0.113 , 0.290)

6 A REAL EXAMPLE IN THE DETECTION OF ALZHEIMER’S DISEASE

In this section, we illustrate the application of the proposed methods to assess the diagnostic accuracy of biomarkers in
the detection of Alzheimer’s disease (AD). The data used in this section were obtained from the ADNI database (adni.
loni.usc.edu). The goal of the ADNI study is to track the progression of the diseases, MCI, and AD, using biomarkers and
clinical measures.
We apply the proposed methods to a small subset of a data-freeze named “QT-PAD Project Data,” which was down-

loaded on June 29, 2017. It is available in the “TestData/Data for Challenges” section of the LONIwebsite (ADNI database).
Here, we only consider nonmissing records based on the commonly used biomarker: Alzheimer’s Disease Assessment
Scale 11 (ADAS11). The dataset we used consists of 203 control subjects (CN), 389 MCI, and 237 AD patients. We consider
MCI as the early stage of AD. Figure 4 presents the estimated density curves of ADAS11 values from these three groups,
respectively. We note that the results of MCI patients are similar to those of control groups. Therefore, we can expect that
the sensitivities of this biomarker to MCI patients cannot be high enough.
In Table 8, we report point estimates and 95% level BEL1 and BEL2 intervals for the sensitivity 𝑃2 of this biomarker to

MCI patients when 𝑃1 = 𝑃3 = 0.3, 𝑃1 = 𝑃3 = 0.4, and 𝑃1 = 𝑃3 = 0.8. As expected, the estimated sensitivity of ADS11 to
MCI (the early stage of AD) patients is low when 𝑃1 = 𝑃3 = 0.8. We observe that ADAS11 has relatively high sensitivities
(0.864–0.923) to the MCI patients when 𝑃1 and 𝑃3 are low (0.4–0.3).

7 DISCUSSION

In this article, we propose an influence function-based EL method, several Bayesian and Bayesian pseudo EL methods
for inference on sensitivity of a test to early stage disease. Our simulation results show that the proposed intervals have
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better coverage accuracy than the existing intervals. The proposed BEL and BpEL intervals have the best performance
among all intervals discussed in this paper. The influence function-based intervals perform slightly worse than the BEL
and BpEL intervals.
In practice, clinicians sometimes need to compare the sensitivities of two tests to early stage disease at the same speci-

ficity and sensitivity to the late stage of disease, denoted as 𝑃21 and 𝑃22. Similar to the proposed Bayesian approach, we
can generate posterior samples of 𝑃21 and 𝑃22 separately to obtain posterior samples of (𝑃21 − 𝑃22). Based on these pos-
terior samples, Bayesian credible intervals for the difference of the sensitivities of two tests to early stage disease can be
easily constructed. In addition, the influence function techniques can be extended immediately to make inference on the
difference between the sensitivities of two tests since the influence function of the difference is the difference between the
influence functions of two sensitivities to early stage disease.
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APPENDIX A
A.1 Proof of propositions and theorem
Proof of Proposition 1. From (23), we only need to prove that

1

𝜎
√
𝑁

𝑁∑
𝑙=1

𝑊𝑙(𝑃1, 𝑃2, 𝑃3)
𝑑
→ 𝑁(0, 1). (A.1)
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From (24), we have that

1√
𝑁

𝑁∑
𝑙=1

𝑊𝑙(𝑃1, 𝑃2, 𝑃3) =
√
𝑁
{ 1

𝑛1

𝑓2(𝑐1)

𝑓1(𝑐1)

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1]

+
1

𝑛2

𝑛2∑
𝑗=1

[𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2) − 𝑃2] +
1

𝑛3

𝑓2(𝑐2)

𝑓3(𝑐2)

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3]
}
. (A.2)

Since 𝐼(𝑌1,𝑗 ≤ 𝑐1)s
𝑖𝑖𝑑
∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑃1), 𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2)s

𝑖𝑖𝑑
∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑃2), and 𝐼(𝑌3,𝑗 > 𝑐2)s

𝑖𝑖𝑑
∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝑃3), by the

central limit theorem, we have that

1√
𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1]
𝑑
8→ 𝑁(0, 𝑃1(1 − 𝑃1)),

1√
𝑛2

𝑛2∑
𝑗=1

[𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2) − 𝑃2]
𝑑
8→ 𝑁(0, 𝑃2(1 − 𝑃2)),

1√
𝑛3

𝑛3∑
𝑖=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3]
𝑑
8→ 𝑁(0, 𝑃3(1 − 𝑃3)). (A.3)

Hence, (A.1) and Proposition 1 follow immediately from (23) and the independence of 𝑌1,𝑖s, 𝑌2,𝑗s, and 𝑌3,𝑘s.
We need the following lemma for the proof of Theorem 1. □

Lemma A.1. Under the conditions in Theorem 1, we have that

(i) 1

𝜎
√
𝑁

∑𝑁

𝑙=1
�̂�𝑙(𝑃1, 𝑃2, 𝑃3)

𝑑
8→ 𝑁(0, 1).

(ii) 1

𝑁

∑𝑁

𝑙=1
�̂�2

𝑙
(𝑃1, 𝑃2, 𝑃3)

𝑝
8→ 𝜎2.

Proof. (i) From (A.1), we only need to prove that

1√
𝑁

𝑁∑
𝑙=1

�̂�𝑙(𝑃1, 𝑃2, 𝑃3) =
1√
𝑁

𝑁∑
𝑙=1

𝑊𝑙(𝑃1, 𝑃2, 𝑃3) + 𝑜𝑝(1). (A.4)

We have the following decomposition:

1√
𝑁

𝑁∑
𝑙=1

�̂�𝑙(1, 𝑃2, 𝑃3)

=
1√
𝑁

𝑁∑
𝑙=1

𝑊𝑙(𝑃1, 𝑃2, 𝑃3) +
√
𝑁
{ 1

𝑛2

𝑛2∑
𝑗=1

[𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2) − 𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2)]
}

+
√
𝑁
{ 1

𝑛1

𝑓2(𝑐1)

𝑓1(𝑐1)

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1] −
1

𝑛1

𝑓2(𝑐1)

𝑓1(𝑐1)

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1]
}

+
√
𝑁
{ 1

𝑛3

𝑓2(𝑐2)

𝑓3(𝑐2)

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3] −
1

𝑛3

𝑓2(𝑐2)

𝑓3(𝑐2)

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3]
}
.

(A.5)
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As we mentioned in Section 3, using the Bahadur representation of the sample quantiles 𝑐1 and 𝑐2 (Ghosh, 1971),

𝑐1 − 𝑐1 =

𝑃1 −
1

𝑛1

∑𝑛1
𝑗=1

𝐼(𝑌1,𝑗 ≤ 𝑐1)

𝑓1(𝑐1)
+ 𝑜𝑝(𝑛

−
1

2

1
),

𝑐2 − 𝑐2 =

1

𝑛3

∑𝑛3
𝑗=1

𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3

𝑓3(𝑐2)
+ 𝑜𝑝(𝑛

−
1

2

3
), (A.6)

and Equations (21) and (22), we get that

1

𝑛2

𝑛2∑
𝑗=1

[𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2) − 𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2)]

=
1

𝑛2

𝑛2∑
𝑗=1

[𝐼(𝑌2,𝑗 ≤ 𝑐2) − 𝐼(𝑌2,𝑗 ≤ 𝑐1)] −
1

𝑛2

𝑛2∑
𝑗=1

[𝐼(𝑌2,𝑗 ≤ 𝑐2) − 𝐼(𝑌2,𝑗 ≤ 𝑐1)]

=
1

𝑛2

𝑛2∑
𝑗=1

[𝐼(𝑌2,𝑗 ≤ 𝑐2) − 𝐼(𝑌2,𝑗 ≤ 𝑐2)] −
1

𝑛2

𝑛2∑
𝑗=1

[𝐼(𝑌2,𝑗 ≤ 𝑐1) − 𝐼(𝑌2,𝑗 ≤ 𝑐1)]

= [�̂�2(𝑐2) − �̂�2(𝑐2)] − [�̂�2(𝑐1) − �̂�2(𝑐1)]

=
1

𝑛3

𝑓2(𝑐2)

𝑓3(𝑐2)

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3] +
1

𝑛1

𝑓2(𝑐1)

𝑓1(𝑐1)

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1] + 𝑜𝑝(𝑁
−1∕2).

(A.7)

In addition, we have that

1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1]

=
1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝐼(𝑌1,𝑗 ≤ 𝑐1)] +
1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1]

= ∫ [𝐼(𝑦 ≤ 𝑐1) − 𝐼(𝑦 ≤ 𝑐1)]𝑑�̂�1(𝑦) +
1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1]

= ∫ [𝐼(𝑦 ≤ 𝑐1) − 𝐼(𝑦 ≤ 𝑐1)]𝑑𝐹1(𝑦)

+𝑛
−1∕2

1 ∫ [𝐼(𝑦 ≤ 𝑐1) − 𝐼(𝑦 ≤ 𝑐1)]𝑑(𝑛
1∕2

1
(�̂�1(𝑦) − 𝐹1(𝑦))) +

1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1].

≡ 𝐷1 + 𝐷2 + 𝐷3. (A.8)

From 𝑛
1∕2

1
(�̂�1(𝑦) − 𝐹1(𝑦))

𝑑
8→ 𝐵(𝑦) which is a Gaussian process, and 𝐼(𝑦 ≤ 𝑐1) − 𝐼(𝑦 ≤ 𝑐1) → 0 a.s., it follows that

𝐷2 = 𝑛
−1∕2

1 ∫ [𝐼(𝑦 ≤ 𝑐1) − 𝐼(𝑦 ≤ 𝑐1)]𝑑(𝑛
1∕2

1
(�̂�1(𝑦) − 𝐹1(𝑦))) = 𝑜𝑝(𝑛

−1∕2

1
). (A.9)
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HAI et al. 21 of 27

Using the Bahadur representation for the sample quantile 𝑐1, 𝑐1 − 𝑐1 = 𝑂𝑝(𝑛
−1∕2

1
), and 𝑜(𝑐1 − 𝑐1) = 𝑜𝑝(𝑛

−1∕2

1
), we get that

1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1] = 𝐷1 + 𝑜𝑝(𝑛
−1∕2

1
) + 𝐷3

= ∫ [𝐼(𝑦 ≤ 𝑐1) − 𝐼(𝑦 ≤ 𝑐1)]𝑑𝐹1(𝑦) + 𝑜𝑝(𝑛
−1∕2

1
) +

1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1]

= 𝑓1(𝑐1)(𝑐1 − 𝑐1) + 𝑜(𝑐1 − 𝑐1) +
1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1] + 𝑜𝑝(𝑛
−1∕2

1
)

= 𝑓1(𝑐1)

⎛⎜⎜⎝
𝑃1 −

1

𝑛1

∑𝑛1
𝑗=1

𝐼(𝑌1,𝑗 ≤ 𝑐1)

𝑓1(𝑐1)
+ 𝑜𝑝(𝑛

−
1

2

1
)

⎞⎟⎟⎠ +
1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1] + 𝑜𝑝(𝑛
−1∕2

1
),

= 𝑓1(𝑐1) ⋅ 𝑜𝑝(𝑛
−1∕2

1
) + 𝑜𝑝(𝑛

−1∕2

1
) = 𝑜𝑝(𝑛

−1∕2

1
). (A.10)

Similarly, we have that

1

𝑛3

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3]

=
1

𝑛3

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝐼(𝑌3,𝑗 > 𝑐2)] +
1

𝑛3

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3]

= −∫ [𝐼(𝑦 ≤ 𝑐2) − 𝐼(𝑦 ≤ 𝑐2)]𝑑�̂�3(𝑦) +
1

𝑛3

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3]

= −∫ [𝐼(𝑦 ≤ 𝑐2) − 𝐼(𝑦 ≤ 𝑐2)]𝑑𝐹3(𝑦) + 𝑜𝑝(𝑛
−1∕2

3
) +

1

𝑛3

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3]

= −𝑓3(𝑐2)(𝑐2 − 𝑐2) +
1

𝑛3

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3] + 𝑜𝑝(𝑛
−1∕2

3
)

= −𝑓3(𝑐2)

⎛⎜⎜⎝
1

𝑛3

∑𝑛3
𝑗=1

𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3

𝑓3(𝑐2)
+ 𝑜𝑝(𝑛

−
1

2

3
)

⎞⎟⎟⎠ +
1

𝑛3

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3] + 𝑜𝑝(𝑛
−1∕2

3
)

= −𝑓3(𝑐2) ⋅ 𝑜𝑝(𝑛
−1∕2

3
) + 𝑜𝑝(𝑛

−1∕2

3
) = 𝑜𝑝(𝑛

−1∕2

3
), (A.11)

Therefore,

1√
𝑁

𝑁∑
𝑙=1

�̂�𝑙(1, 𝑃2, 𝑃3) =
1√
𝑁

𝑁∑
𝑙=1

𝑊𝑙(𝑃1, 𝑃2, 𝑃3)

+

√
𝑁

𝑛1

𝑓2(𝑐1)

𝑓1(𝑐1)

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1] +

√
𝑁

𝑛3

𝑓2(𝑐2)

𝑓3(𝑐2)

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3] + 𝑜𝑝(1)

=
1√
𝑁

𝑁∑
𝑙=1

𝑊𝑙(𝑃1, 𝑃2, 𝑃3) + 𝑜𝑝(1). (A.12)
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22 of 27 HAI et al.

Under the assumptions in Theorem 1, kernel density estimators for �̂�𝑖s are almost surely and uniformly consistent (see
Silverman, 1978). The last equality holds by the uniform consistency of the density estimates 𝑓1, 𝑓2, and 𝑓3 , and

𝑓2(𝑐1)

𝑓1(𝑐1)
=

𝑂(1), 𝑓2(𝑐2)
𝑓3(𝑐2)

= 𝑂(1). Lemma A.1(i) is thus proved.
(ii) Since

1

𝑁

𝑁∑
𝑙=1

𝑊2
𝑙
(𝑃1, 𝑃2, 𝑃3)

=
𝑁

𝑛2
1

𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1]
2 +

𝑁

𝑛2
2

𝑛2∑
𝑗=1

[𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2) − 𝑃2]
2

+
𝑁

𝑛2
3

𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3]
2

= (1 + 𝜌−1
1

+ 𝜌−1
3
)
𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

𝐸[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1]
2 + (1 + 𝜌1 + 𝜌2)𝐸[𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2) − 𝑃2]

2

+ (1 + 𝜌−1
2

+ 𝜌3)
𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

𝐸[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3]
2 + 𝑜𝑝(1)

= (1 + 𝜌−1
1

+ 𝜌−1
3
)𝑃1(1 − 𝑃1)

𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

+ (1 + 𝜌1 + 𝜌2)𝑃2(1 − 𝑃2)

+ (1 + 𝜌−1
2

+ 𝜌3)
𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

𝑃3(1 − 𝑃3) + 𝑜𝑝(1) = 𝜎2 + 𝑜𝑝(1), (A.13)

we only need to prove that

1

𝑁

𝑁∑
𝑙=1

�̂�2
𝑙
(𝑃1, 𝑃2, 𝑃3) =

1

𝑁

𝑁∑
𝑙=1

𝑊2
𝑙
(𝑃1, 𝑃2, 𝑃3) + 𝑜𝑝(1). (A.14)

Under the assumptions in Theorem 1, using the uniform consistency of the density estimate 𝑓1 (Silverman, 1978) and
the strong consistency of the sample quantile 𝑐1, we get that

||𝑓1(𝑐1) − 𝑓1(𝑐1)|| ≤ ||𝑓1(𝑐1) − 𝑓1(𝑐1)|| + ||𝑓1(𝑐1) − 𝑓1(𝑐1)||
≤ sup

𝑥

||𝑓1(𝑥) − 𝑓1(𝑥)|| + 𝑜𝑝(1) = 𝑜𝑝(1). (A.15)

So, 𝑓1(𝑐1) = 𝑓1(𝑐1) + 𝑜𝑝(1). Similarly, we have 𝑓3(𝑐2) = 𝑓3(𝑐2) + 𝑜𝑝(1), 𝑓2(𝑐1) = 𝑓2(𝑐1) + 𝑜𝑝(1), and 𝑓2(𝑐2) = 𝑓2(𝑐2) +

𝑜𝑝(1). By Slutsky’s theorem, we have that
𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

=
𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

+ 𝑜𝑝(1) and
𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

=
𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

+ 𝑜𝑝(1).

From Equation (A.7) and central limit theorem (CLT), it follows that

1

𝑛2

𝑛2∑
𝑗=1

[
𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2) − 𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2)

]
= −

1

𝑛3

𝑓2(𝑐2)

𝑓3(𝑐2)

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝑃3] −
1

𝑛1

𝑓2(𝑐1)

𝑓1(𝑐1)

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1] + 𝑜𝑝(𝑁
−1∕2)

= 𝑂𝑝(𝑛
−1∕2

1
) + 𝑂𝑝(𝑛

−1∕2

3
) + 𝑜𝑝(𝑁

−1∕2)

= 𝑂𝑝(𝑁
−1∕2). (A.16)
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HAI et al. 23 of 27

Similarly, from Equation (21) and Bahadur representation of the sample quantile, we have that

1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝐼(𝑌1,𝑗 ≤ 𝑐1)] = 𝑓1(𝑐1)(𝑐1 − 𝑐1) + 𝑜𝑝(𝑛
−1∕2

1
)

=
1

𝑛1

𝑛1∑
𝑗=1

[𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝑃1] + 𝑜𝑝(𝑛
−1∕2

1
)

= 𝑂𝑝(𝑛
−1∕2

1
)

(A.17)

and

1

𝑛3

𝑛3∑
𝑗=1

[𝐼(𝑌3,𝑗 > 𝑐2) − 𝐼(𝑌3,𝑗 > 𝑐2)] = 𝑂𝑝(𝑛
−1∕2

3
). (A.18)

Therefore,

||| 1𝑁 𝑁∑
𝑙=1

𝑊2
𝑙
(𝑃1, 𝑃2, 𝑃3) −

1

𝑁

𝑁∑
𝑙=1

�̂�2
𝑙
(𝑃1, 𝑃2, 𝑃3)

|||
= (𝑁)

|||1 − 2𝑃2

𝑛2
2

𝑛2∑
𝑗=1

[
𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2) − 𝐼(𝑐1 < 𝑌2,𝑗 ≤ 𝑐2)

]
+

𝑃2
1

𝑛2

[
𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

−
𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

]

+
1 − 2𝑃1

𝑛2
1

𝑛1∑
𝑗=1

{(𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

−
𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

)
𝐼(𝑌1,𝑗 ≤ 𝑐1) +

𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

[
𝐼(𝑌1,𝑗 ≤ 𝑐1) − 𝐼(𝑌1,𝑗 ≤ 𝑐1)

]}

+
1 − 2𝑃3

𝑛2
3

𝑛3∑
𝑗=1

{(𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

−
𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

)
𝐼(𝑌3,𝑗 > 𝑐2) +

𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

[
𝐼(𝑌3,𝑗 > 𝑐2) − 𝐼(𝑌3,𝑗 > 𝑐2)

]}

+
𝑃2
3

𝑛3

[
𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

−
𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

]|||
≤ 𝑜𝑝(1), (A.19)

and Lemma A.1(ii) is proved. □

Proof of Theorem 1. From (24), we have that 𝐸(𝑊𝑙(𝑃1, 𝑃2, 𝑃3)) = 0, and

𝑉𝑎𝑟(𝑊𝑙(𝑃1, 𝑃2, 𝑃3)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑁2

𝑛2
1

𝑓2
2
(𝑐1)

𝑓2
1
(𝑐1)

𝑃1(1 − 𝑃1), 𝑙 = 1, … , 𝑛1,

𝑁2

𝑛2
2

𝑃2(1 − 𝑃2), 𝑙 = 𝑛1 + 1,… , 𝑛1 + 𝑛2,

𝑁2

𝑛2
3

𝑓2
2
(𝑐2)

𝑓2
3
(𝑐2)

𝑃3(1 − 𝑃3), 𝑙 = 𝑛1 + 𝑛2 + 1,… ,𝑁.

(A.20)

From (A.20) and the assumptions in Theorem 1, it follows that 𝑉𝑎𝑟(𝑊𝑙(𝑃1, 𝑃2, 𝑃3)) < ∞. Then, using the similar
techniques in the proofs of Lemma 11.1 and Theorem 3.2 in Owen (2001), we get that zero is inside the convex hull of
𝑊𝑙(𝑃1, 𝑃

0
2
, 𝑃3)s with probability tending to 1. From the strong consistency of the density estimates 𝑓𝑖s and the strong con-

sistency of the sample quantile 𝑐𝑖s, it follows that �̂�𝑙(𝑃1, 𝑃
0
2
, 𝑃3) = 𝑊𝑙(𝑃1, 𝑃

0
2
, 𝑃3) + 𝑜(1), 𝑎.𝑠. Hence, zero is inside the

convex hull of �̂�𝑙(𝑃1, 𝑃
0
2
, 𝑃3)s with probability tending to 1.
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Using Proposition 1 and Lemma A.1, Theorem 1 can be proved by using the similar techniques in the proof of Theorem
2 in Gong et al. (2010) or an application of Theorem 1 and subsequent corollaries in Adimari and Guolo (2010). The details
for the proof are omitted here. □

Proof of Proposition 2. We first briefly introduce the approach of Clarke and Yuan (2010). Define the outer product matrix
Ω = 𝐸[𝑔(𝑍𝑗, 𝑃2)𝑔

′(𝑍𝑗, 𝑃2)], Jacobian matrix 𝐷(𝑃2) = 𝐸[𝜕𝑔(𝑍𝑗, 𝑃2)∕𝜕𝑃2] and the matrix Λ(𝑃2) = 𝐷′(𝑃2)Ω
−1(𝑃2)𝐷(𝑃2),

where 𝑔(𝑍𝑗, 𝑃2) is an estimating function.
For our BEL approach, 𝑔(𝑍𝑗, 𝑃2) = 𝑈(𝑌2,𝑗) − 𝑃2, where 𝑈(𝑌) is defined in Section 2, and Ω(𝑃2) = 𝐸[𝑔(𝑍𝑗, 𝑃2)]

2 =

𝐸[𝑈(𝑌2,𝑗) − 𝑃2]
2 = 𝑃2(1 − 𝑃2). Thus we have

Λ(𝑃2) = 𝐷′(𝑃2)Ω
−1(𝑃2)𝐷(𝑃2) =

1

𝑃2(1 − 𝑃2)
. (A.21)

So the reference prior for the EL under the relative entropy is𝜋𝐸𝐿,1(𝑃2) ∝ |Λ−1(𝑃2)|1∕2 = √
𝑃2(1 − 𝑃2), that is,𝜋𝐸𝐿,1(𝑃2) =

𝛽(
3

2
,
3

2
), and the reference prior for the hybrid EL under Hellinger distance is

𝜋𝐸𝐿,2(𝑃2) ∝ |Λ(𝑃2)|1∕2 = 1√
𝑃2(1 − 𝑃2)

, (A.22)

that is, 𝜋𝐸𝐿,2(𝑃2) = 𝛽(
1

2
,
1

2
). □

 15214036, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200021 by U
niversity O

f Southern C
alifornia, W

iley O
nline L

ibrary on [27/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HAI et al. 25 of 27

A.2 QQplots for IF-, ELB-, andELP-basedempirical log-likelihood ratio statisticswithnormaldistributions
as the underlying distributions

F IGURE A1 Four scenarios for (𝑃1, 𝑃2, 𝑃3): (1) 𝑃1 = 𝑃3 = 0.8 and 𝑃2 = 0.8; (2) 𝑃1 =𝑃3 = 0.9 and 𝑃2 = 0.8; (3) 𝑃1 = 𝑃3 = 0.8 and 𝑃2 = 0.9;
(4) 𝑃1 = 𝑃3 = 0.9 and 𝑃2 = 0.9
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26 of 27 HAI et al.

F IGURE A2 Four scenarios for (𝑃1, 𝑃2, 𝑃3): (1) 𝑃1 = 𝑃3 = 0.8 and 𝑃2 = 0.8; (2) 𝑃1 =𝑃3 = 0.9 and 𝑃2 = 0.8; (3) 𝑃1 = 𝑃3 = 0.8 and 𝑃2 = 0.9;
(4) 𝑃1 = 𝑃3 = 0.9 and 𝑃2 = 0.9
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F IGURE A3 Four scenarios for (𝑃1, 𝑃2, 𝑃3): (1) 𝑃1 = 𝑃3 = 0.8 and 𝑃2 = 0.8; (2) 𝑃1 = 𝑃3 = 0.9 and 𝑃2 = 0.8; (3) 𝑃1 = 𝑃3 = 0.8 and 𝑃2 = 0.9;
(4) 𝑃1 = 𝑃3 = 0.9 and 𝑃2 = 0.9
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